We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Ultra-High Vacuum?

Michael Anissimov
By
Updated: May 17, 2024
Views: 7,002
Share

Ultra-high vacuum refers to pressures lower than 10−7 pascal or 100 nanopascals (one ten-millionth of a pascal). By comparison, atmospheric pressure is 101.3 kPa (kilopascals), more than a billion times greater, the pressure inside a light bulb is about 1 pascal, and the pressure in the walls of a thermos is about 0.1 pascals. Even outer space in the area around Earth isn't an ultra-high vacuum, as it has a pressure of about 100 micropascals, a thousand times greater than in an ultra-high vacuum. In an ultra-high vacuum, the mean free path of each gas molecule is 40 km, so these molecules will collide many times with the walls of their chamber before colliding with each other.

Ultra-high vacuum is primarily used for surface analytic techniques, such as Auger electron spectroscopy, x-ray photoelectron spectroscopy, secondary ion mass spectrometry, thermal desorption spectroscopy, angle resolved photoemission spectroscopy, and thin film growth techniques requiring high purity, such as molecular beam epitaxy and UHV chemical vapor deposition. Ultra-high vacuum is also used in particle accelerators to create an empty beam path.

Creating an ultra-high vacuum requires extraordinary measures. Special chamber designs minimize surface area, high-speed pumps, including parallel pumps, must be used, high conductance tubing is used for pumps, pits of trapped gas (as in bolt threads) must be eliminated, chamber walls must be cooled to cryogenic temperatures to avoid sublimation of gases trapped in nanoscopic pockets, all metal parts must be electropolished, low-outgassing materials such as stainless steel must be used, and the system must be baked at 250 °C to 400 °C (482 °F to 752 °F) to remove hydrocarbon or water traces. Outgassing — the slow intrusion of gas molecules through tiny cracks in the chamber — can be a major problem. Some chambers may be incapable of producing an ultra-high vacuum because of the way they were fabricated, and the hardware must be thrown out and replaced. For all these reasons, achieving ultra-high vacuum can be expensive and difficult.

Although ultra-high vacuum may seem extreme, some environments are an even better vacuum, including the surface of the Moon and interstellar space. Some regions of space, such as the Boötes void, are so rarefied that there is only one atom per cubic meter.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.

Editors' Picks

Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology,...
Learn more
Share
https://www.wisegeek.net/what-is-ultra-high-vacuum.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.