We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Thermodynamic Analysis?

Helen Akers
By
Updated: May 17, 2024
Views: 15,136
References
Share

Thermodynamic analysis is used by engineers to evaluate how energy affects the performance of mechanical systems. It uses mathematical models to determine the effects of different energy inputs and some of the energy outputs that result from a machine's operation. Engineers develop models to illustrate the variables that have a direct impact on the system's energy cycle. Common systems that are evaluated with this type of analysis are combustion engines and steam cycles.

Part of a thermodynamic analysis examines how energy moves throughout a mechanical system, such as an engine. It explains how that energy causes the system to perform. For example, a vehicle's combustion engine, the energy produced by burning gasoline interacts with the engine's parts, producing the power needed for the car or truck to keep moving. The analysis attempts to explain how this process works.

Given different energy input values, this analysis can be used to determine the performance ranges of a mechanical system. Mathematical models are constructed to establish certain parameters or laws. In simple terms, these models explain how if "x" amount of energy is put into the system, it will perform at "y" level. Potential responses are also measured in a thermodynamic analysis to determine the performance limits of systems.

The analytic process breaks down and isolates the different sources of energy that a system needs in order to produce power. It examines how those energy sources interact with each other at each step of the process. Again using the example of an automobile engine, each major element of the system — such as gasoline, pressure, and temperature — would be separated and it would be determined at what point certain elements and interactions would cause different reactions within the engine. For instance, engineers know that when the gasoline is heated, which is triggered by the car's ignition process, it expands and combusts to provide the vehicle with the power to move.

In a thermodynamic analysis, the performance of a mechanical system is usually characterized as a process that is separated into specific steps. While the separate steps will typically build upon each other, each one is examined to determine how it contributes to the operation of the system and whether it directly affects the amount of power that the system generates. From these process steps, engineers develop a likely mathematical model that can be used to predict performance.

The mathematical models that engineers develop will vary depending upon the type of mechanical system that is being evaluated. Most involve algebraic equations since a thermodynamic analysis often deals with a set of known and unknown variables. Several equations may be created in order to explain the inter-dynamics of the mechanical system and its sources of power.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources
Helen Akers
By Helen Akers
Helen Akers, a talented writer with a passion for making a difference, brings a unique perspective to her work. With a background in creative writing, she crafts compelling stories and content to inspire and challenge readers, showcasing her commitment to qualitative impact and service to others.

Editors' Picks

Discussion Comments
Helen Akers
Helen Akers
Helen Akers, a talented writer with a passion for making a difference, brings a unique perspective to her work. With a...
Learn more
Share
https://www.wisegeek.net/what-is-thermodynamic-analysis.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.