We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Software

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is the Visual Hull?

By Eugene P.
Updated: May 17, 2024
Views: 8,188
References
Share

In computer imaging, a visual hull is the three-dimensional (3D) shape of an object that is extrapolated from multiple two-dimensional (2D) images taken at different angles around the object being approximated. Surface data about the shape of an object is obtained by tracing the contour of an object in an image, essentially creating a silhouette of the object with no specific inside texture or detail. A collection of silhouettes, all extracted from images taken at different angles, are assembled together in 3D space and the area between known contour points is interpolated to form a 3D object that has the general 3D outline of the actual object, though perhaps without as much specific detail. The process used to create a visual hull, also known as shape-from-silhouette (SFS), can be faster, less processor-intensive and less expensive to implement than some stereoscopic techniques for capturing 3D motion or detecting the shape of 3D objects. Some of the applications that use the visual hull include computer vision obstacle detection, motion capture for medical or other analytical purposes, and virtual 3D object scanning when SFS is performed in highly controlled conditions.

The process of forming the visual hull of an object from a set of images involves isolating the silhouette of the object from the background in the images. The exact location and orientation of the cameras used to acquire the images also are important to the process. In each image, a straight path is made from the viewing plane of the image to the space of the scene and ending on the contours of the object being imaged. This is done for each image and the area where each of the paths, which resemble cones in a 3D environment, cross gives a very rough, block-like volume that contains the object within the dimensions of the scene. For some applications, such as computer vision, this information is enough to allow for basic obstacle avoidance.

The silhouettes can be further refined so smaller geometric details are translated to the visual hull. These can include holes in the object, as might occur if the visual hull was being constructed from images of a human standing with legs apart or arms outstretched. One attribute of an object shape that cannot be accurately captured with SFS techniques is a concave surface, because it does not contribute to the silhouette.

The SFS technique for creating the visual hull of an object can be incredibly detailed and accurate if refined algorithms are used in conjunction with controlled conditions to create the source images. These conditions can include a single, consistent light source, a static and measurable background, and cameras that are exactingly calibrated. Given these conditions, very precise 3D models of objects can be constructed, and motion capture can be performed without the need for markers, tracers or special equipment beyond cameras.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-the-visual-hull.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.