We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is the Electromagnetic Spectrum?

Michael Anissimov
By
Updated: May 17, 2024
Views: 23,515
Share

The electromagnetic spectrum consists of the totality of all electromagnetic radiation. Made up of photons, everything in the electromagnetic spectrum is sometimes referred to as light, although the word sometimes refers to only the human-visible portion of the electromagnetic spectrum.

Photons have some characteristics of a particle and some of a wave. For example, they have a wavelength. The wavelength of a photon ranges from many times smaller than an atomic diameter to the width of the earth. All radiation that is part of the electromagnetic spectrum has three fundamental properties – frequency or wavelength, intensity, and polarization. The last property, which refers to the angle of the electromagnetic wave, cannot be detected by the human eye, although bees can perceive it.

All electromagnetic radiation travels at the speed of light, although an intervening material of the right makeup can reflect it, slow it, or absorb it. The primary source of electromagnetic spectrum radiation on earth is from the sun, though many processes can create it, including various phosphorescent life forms.

Electromagnetism may be thought of as an oscillating perturbation in the electromagnetic field. The electromagnetic spectrum consists of all possible perturbations. We can only see a small portion of them – light with a wavelength between about 400 nanometers and about 750 nanometers. Perhaps not surprisingly, this is the wavelength of light that pours in large quantities from the sun, and our visual systems have evolved to perceive it. The acronym ROYGBIV is sometimes used to describe the human-visible colors of the electromagnetic spectrum, in order of lowest frequency to highest frequency: red, orange, yellow, green, blue, indigo, and violet.

The type of electromagnetic radiation with a wavelength longer than that of the color red is called infrared, and is given off by all objects that release heat. Infrared ranges in wavelength from about 750 nanometers to as long as a millimeter. Following infrared are microwaves, with a wavelength between about a millimeter to around 30 centimeters (12 inches). These are used in a microwave oven. Radio waves include anything with a longer wavelength than microwaves. These have the greatest ability to penetrate the earth’s atmosphere and therefore are extremely important to communications technology.

Electromagnetic radiation with smaller wavelengths than visible light include the ultraviolet, followed by x-rays, then gamma rays. Gamma rays are a type of cosmic ray and can have extremely high energies. Gamma rays can have energies much higher than anything yet produced in our particle accelerators, and their wavelengths can be as small as a single subatomic particle.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.

Editors' Picks

Discussion Comments
By GigaGold — On Feb 28, 2011

Birds can actually see more of the electromagnetic spectrum than we can, and know of colors which we can never see. They are required to have such sharp vision because of their need to hunt from high in the sky and detect small moving animals from a great height.

By arod2b42 — On Feb 25, 2011

The electromagnetic spectrum which is visible is a result of light waves and photons bouncing off of atoms in a given pattern or wavelength. Depending on the wavelength, these patterns will be seen as different colors from our perspective.

By TrogJoe19 — On Feb 23, 2011

@Tufenkian925

I don't think we could read the radio signals of radio waves without an audio transmitter. The way this works is that it receives the signal and converts it back into sound waves. There is no way to do this by mere vision.

By Tufenkian925 — On Feb 21, 2011

If we could see more than we can currently see in the electromagnetic spectrum, the sight would be dazzling. We would notice billions of signals bouncing around our heads at all times, from radio signals to microwave signals. In a sense, we would be able to "see" the source of these signals, and interpret their sound waves to understand what was being transmitted. The transmission of sound and information on the electromagnetic spectrum is immensely powerful and has caused us to advance immensely.

Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology,...
Learn more
Share
https://www.wisegeek.net/what-is-the-electromagnetic-spectrum.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.