Swarm robotics is an approach to robotics that emphasizes many simple robots instead of a single complex robot. A robot swarm has much in common with an ant colony or swarm of bees. No individual in the group is very intelligent or complex, but combined, they can perform difficult tasks. Swarm robotics has been an experimental field, but many practical applications have been proposed.
A traditional robot often needs complex components and significant computer processing power to accomplish its assigned tasks. In swarm robotics, each robot is relatively simple and inexpensive. As a group, these simple machines cooperate to perform advanced tasks that otherwise would require a more powerful, more expensive robot.
Using many simple robots has other advantages as well. Robot swarms have high fault tolerance, meaning that they still will perform well if some of the individual units malfunction or are destroyed. Swarms also are scalable, so the size of the swarm can be increased or decreased as needed.
One use that researchers have demonstrated for swarm robotics is mapping. A single robot would constantly need to keep track of its location, remember where it had been and figure out how to avoid obstacles while still exploring the entire area. A swarm of robots could be programmed simply to avoid obstacles while keeping in contact with other members of the swarm. The data from all of the robots in the swarm is then combined into a single map.
Swarm robotics has been an emerging field, and it has presented unique challenges to researchers. Programming a swarm of robots is unlike other types of programming. The model of distributed computing — using many computers to work on a single large task — is somewhat similar. Unlike distributed computing, however, each individual in swarm-style robotics deals with unique stimuli. Each robot, for example, is in a different location at any given time.
Some approaches to swarm robotics use a control unit that coordinates other robots. Other approaches use techniques borrowed from nature to give the swarm itself a type of collective intelligence. Much of the current research in the field focuses on finding the most efficient way to use a swarm.
The problems of organizing a swarm haven’t kept people from imagining what swarm robotics could offer some day. Some scientists envision a swarm of very small microbots being used to explore other planets. Other proposed uses include search-and-rescue missions, mining and even firefighting. When used with nanobots — microscopic-size robots — swarm robotics could even be used in human medicine.