We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Health

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Protein C?

By Paul Scott
Updated: May 17, 2024
Views: 9,293
Share

Protein C is a compound present in the human body that exists in either an inactive or activated state. In its activated state, protein C plays an essential role in several important biological functions including blood clotting and programmed cell death. Also know as autoprothrombin IIA and blood coagulation factor XIV, the protein in its inactive state is made up of over 400 amino acids and relies on the presence of substances such as thrombomodulin in the blood stream for its activation. It is produced in the liver, and deficiencies may cause several serious, often fatal, conditions. The protein has been used as a therapeutic treatment in the past but has largely fallen from favor due to the associated severe bleeding risks involved.

Under normal conditions, protein C is a zymogenic or inactive agent that requires the presence of certain biological precursors to become active. Once activated, protein C plays a key role in facilitating a number of critical biological functions relating to blood coagulation. These functions include the regulation of blood clotting, inflammation, blood vessel wall permeability and apoptosis or programmed cell death (PCD). When inactive, protein C is a complex, dual chain combination of 419 amino acids linked by a peptide activator. The previously mentioned biological precursors, such as thrombomodulin and endothelial protein C receptor (EPCR), act on this peptide link, thereby splitting the chain and activating the protein.

The activated protein C (APC) then goes to work at suppressing other agents in the bloodstream to achieve its anticoagulant and anti-inflammatory functions. The critical role that APC plays in these essential processes makes deficiencies in the natural production of the protein particularly dangerous. Persons with impaired production levels of the protein suffer from a significant increase in the risk of potentially fatal thrombosis or blood clot formation. Deficiencies in the production of the protein are typically the result of genetic factors; lifestyle and diet generally play insignificant roles. A condition known as activated protein C resistance which impairs the efficacy of the activated protein can also cause APC deficiency type conditions.

Therapeutic applications of APC have been used in several trials to treat conditions such as lung injuries, ischemic strokes, severe sepsis, and type 1 diabetes. It has also been investigated as an aid in improving the outcomes in pancreatic islet transplants. Although the results have been generally encouraging, the potential of resultant uncontrollable bleeding makes it unrealistically risky in many cases.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-protein-c.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.