We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Multisensor Data Fusion?

By Jordan Weagly
Updated: May 17, 2024
Views: 7,169
Share

Multisensor data fusion is the process of acquiring multiple data sets from multiple sensors with the intent of building a more precise data set. Often considered more accurate than single-sensor data, this type of information fusion has many applications. For example, combining the data from a temperature sensor with a wind chill sensor can help someone inside understand how cold it might feel outside. Aside from meteorological applications, multisensor data analytics can also be applied to environment analysis, transportation management and target tracking.

The many applications of multisensor data fusion show just how useful information fusion can be. When data are coming from multiple sources, specific sets of data can be revised, replaced or cut from the fused data. For instance, a marine biologist interested in tracking whales might use data fusion to monitor factors that he or she thinks might affect whale habits. The end result of multisensor data fusion processes could be a visual map of whale movement related to seawater temperature or other factors. These types of applications rely on many techniques, including physical equipment, algorithms and the related information fusion mathematics.

Sensor technology, mathematical processes and the application of fused data sets all determine the practical application of multisensor data fusion. The technology and processes used to combine integrated data can be thought of as mimicking natural human ability to perceive an environment and make decisions based on the five senses. Technology-based sensors and the related techniques necessary for data fusion might be more specific, however, than human perception.

The combination of these specific sets of data is a defining feature of multisensor data fusion and differentiates information fusion from data integration. Data integration is a large part of the multisensor data fusion process, however, and might be considered a building block for building more advanced data sets. For instance, a sensor may record many different sets of temperatures within a certain period of time and later build a larger set over a longer period of time. This process differs from multisensor data analytics, however, because it does not generally include information from many different sources.

As part of the data fusion process, data integration is inseparable. Without the information provided by strong data integration, there would be no basis for multisensor data fusion. In fact, a common type of multisensor data analytics is low-level data fusion. This process refers to the combination of raw data to create new data sets that are generally expected to be more specific and synthetic than the raw data.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-multisensor-data-fusion.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.