We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Heat of Solution?

Daniel Liden
By
Updated: May 16, 2024
Views: 11,910
Share

Heat of solution, also known as the enthalpy change of solution, is the change in enthalpy that occurs when a given solute is dissolved in a solvent to form a solution. Enthalpy is a term used in thermodynamics to describe the energy in a system. One cannot directly measure the total enthalpy of a system, so the change in enthalpy is used for measurements such as heat of solution rather than the total enthalpy of the system. There are several processes that occur when a solute is dissolved in a solution, and each is able to change the enthalpy of the solution. In many cases, a variety of chemical bonds are broken and new bonds are formed, all of which result in a change of enthalpy.

There are three primary aspects of the dissolution of a solute in a solvent that contribute to the heat of solution. First, when the solute is added, the chemical interactions linking solute molecules break, which requires the consumption of some energy. Next, chemical attractions linking solvent molecules also break as the solute molecules enter the system, again requiring energy consumption. Lastly, after these attractions are broken, new interactions between the solvent and solute molecules are formed, resulting in the release of some energy.

The first two aspects of dissolution require energy input and are referred to as endothermic processes. The third, by which attractions form between solvent and solute molecules, is referred to as an exothermic process, as it releases energy into the system. To determine the total heat of solution, one can simply take the sum of each enthalpy change. In some cases, the first two parts of dissolution require more energy input than the formation of new attractions releases, resulting in a process that is endothermic overall. In others, the final release of energy is greater than the energy required to break the solute-solute and solvent-solvent attractions, so the process is exothermic overall.

It also is possible to measure the heat of solution based on temperature changes in a solution. A predominantly exothermic process will release energy into the system and will, therefore, increase the temperature of the solution. A primarily endothermic process, on the other hand, will consume energy and, therefore, reduce the temperature of the reaction. If one knows various properties of the solute and solvent in advance, one can use the change in temperature to determine the heat of solution with reasonable accuracy.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Daniel Liden
By Daniel Liden
Daniel Liden, a talented writer with a passion for cutting-edge topics and data analysis, brings a unique perspective to his work. With a diverse academic background, he crafts compelling content on complex subjects, showcasing his ability to effectively communicate intricate ideas. He is skilled at understanding and connecting with target audiences, making him a valuable contributor.

Editors' Picks

Discussion Comments
Daniel Liden
Daniel Liden
Daniel Liden, a talented writer with a passion for cutting-edge topics and data analysis, brings a unique perspective to...
Learn more
Share
https://www.wisegeek.net/what-is-heat-of-solution.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.