We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Heat Capacity?

By Vincent Summers
Updated: May 17, 2024
Views: 9,560
Share

The input of heat energy (Q) required to raise the temperature (T) of a substance one degree Celsius (1° C), is defined as its heat capacity (C). Since it is an "extensive" property, the value of C varies not only from substance-to-substance, but also for different amounts of the same substance. To adjust for this, heat capacities may be stated in terms incorporating quantity or amount. If reference is made to heat capacity per mole of material, it is called molar heat capacity; if it is to heat capacity per gram of material instead, it is the specific heat capacity (s) — or more simply, the "specific heat." These terms are of greatest value when referring to pure substances.

Engineering problems often provide C as a "given," while Q is "unknown." The equation is Q=smΔT, where m is the mass in grams and ΔT is the rise in temperature in degrees Celsius. Heat capacity can be a key parameter for a host of reasons. To illustrate, materials of larger heat capacities are sometimes used as heat sinks, because they absorb heat like a sponge. Water is noteworthy in this regard, as it exhibits the greatest C value known among common substances, making it eminently suitable for use as radiator coolant.

In meteorology, heat capacity plays a role in several phenomena, including why wind, along the coast, blows in a different direction in day than it does at night. Land has a lower heat capacity than water, so land heats up quicker than the sea by day, whereas it cools more rapidly at night. Air is cooler over the ocean by day, but over the land at night. Warm air is light and rises, allowing cooler and heavier breezes to replace it. During the day, these breezes blow from land-to-sea, while during the night, the opposite is true, which facts influence shore birds and glider pilots alike.

Heat capacity is not intended to take into consideration phase changes, as in the melting of ice to form water. Separate consideration is given to this phenomenon — this property is called "heat of fusion." Similarly, the conversion of liquid to gas is called "heat of vaporization." Ice has an exceptionally high heat of fusion, imparting stability to earth’s weather systems and making home refrigeration practical. Curiously, ammonia gas, once used in industrial and home refrigeration systems, has an even higher heat capacity and heat of fusion.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-heat-capacity.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.