We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is Electrical Resistivity?

By Geisha A. Legazpi
Updated: May 17, 2024
Views: 8,986
References
Share

Electrical resistivity is the characteristic of a conductor, a semiconductor, or an insulator that limits the amount of current flow. It is determined by the atomic or molecular properties that may either allow or impede the flow of free electrons through the material. Electrical resistivity is almost the same as electrical resistance with the slight difference in the way electrical resistivity may refer to resistance of a specific length of a material. For instance, a basic unit of resistivity could refer to the amount of resistance per unit length of a copper cable.

Ohm’s law provides the relationship between the electrical resistance (R), the voltage (V), and the current flow in amperes (A). Resistance is the ratio of the voltage to the current. For the same voltage, a higher current is a result of a lower resistance. An electrical fuse is meant to have a very low voltage drop when placed in series with an electrical load. If the load is 9.999 ohms and the fuse has a resistance of 0.001 ohms, a 10-volt (V) supply voltage will produce a current of 1 A and the voltage across the fuse is negligible at 0.001 V.

Electrical resistivity tomography is an imaging tool that is able to present a three-dimensional profile of embedded materials. This is accomplished by using embedded electrodes and direct current (DC) to create a two-dimensional image. By using perpendicular image planes, it is possible to have an idea of the three-dimensional layout.

Various elements with notable electric resistivity have different uses in electrical applications. Silver and gold are very low-electrical resistivity elements that are used for special applications such as microbonding used in the semiconductor industry. Copper is the chosen commercial conductor sure to its acceptable electrical resistivity and relatively low price. Carbon is a low-cost material of choice for medium to high resistance resulting in huge varieties of carbon resistance in the market. The high stability of tungsten in relatively high temperatures makes it a common choice for incandescent and filament applications such as light bulbs, wire-wound variable resistors, and electric heaters.

Contact electrical resistance is usually very low when the conductive surfaces are not contaminated. In the case of relay contacts, the pressure that temporarily joins them determines how low the resistance will drop when the contact is closed. If the pressure is not enough and the current is high, it is possible for the contact to form plasma that can melt the contact. The spark generated due to repeated closures shortens the relay lifespan. In most cases, it is a good idea to use electronic DC switches such as the silicon-controlled rectifier (SCR) or use electronic alternating current (AC) switches like the three-terminal AC (TRIAC) switch.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-electrical-resistivity.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.