We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Science

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Curium?

Mary McMahon
By
Updated: May 17, 2024
Views: 8,015
Share

Curium is a metallic chemical element classified among the actinides on the periodic table of elements. It is also considered a transuranic element, meaning that it has an atomic number higher than that of uranium. Transuranic elements share a number of properties, most notably radioactivity and extreme instability, which make them difficult to identify and study. Like other transuranic elements, curium must be synthetically produced, as it does not exist in nature, and typically only small amounts are produced at once since the process is painstaking and expensive.

Chemically, curium actually shares a number of traits with the rare earth elements. It is silvery in color, and very reactive. It is also extremely radioactive, tending to bioaccumulate in bone tissue, interfering with the production of red blood cells. On the periodic table of elements, curium is identified with the symbol Cm and the atomic number of 96.

Credit for the discovery of this element belongs to a team of scientists at the University of California, Berkeley. The men were led by Glenn Seaborg, a nuclear chemist who contributed a great deal to the understanding of the transuranic elements by identifying and isolating many of these elements. Their discovery took place in 1944, when they bombarded plutonium with alpha particles to synthesize curium.

This element is named for Pierre and Marie Curie, two famous scientists who did a great deal of work with radioactive material in the early twentieth century. The rarity of curium has meant that it is only used in research, with no practical commercial applications. Scientists suspect that the element could at some point be utilized as a source of fuel, and its isotopes might have some potential uses, but these uses have not as yet been identified. By researching curium, chemists can learn more about the element and its potential uses.

Because this element is radioactive, it does represent a human health risk. Fortunately, curium is so rare that most people will never be exposed to enough of it for health risks to be a concern. However, curium impurities in nuclear fuel can cause increased radiation exposure at nuclear power plants, which is why monitoring of such fuel is very important. In the laboratory setting, people usually work with such small amounts of this element that it does not pose a significant health risk, especially when handled with proper precautions.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Mary McMahon
By Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a WiseGeek researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Editors' Picks

Discussion Comments
By anon18672 — On Sep 27, 2008

What are the precautions when handling or working with Curium?

Mary McMahon
Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a...

Learn more
Share
https://www.wisegeek.net/what-is-curium.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.