We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Health

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Citrate Synthase?

By Greg Caramenico
Updated: May 17, 2024
Views: 10,648
Share

The enzyme citrate synthase catalyzes the first step in a cellular metabolic process called the citric acid cycle. This process occurs in the majority of animal, plant, and bacterial cells, producing cellular energy for life, in the form of a molecule called ATP. The first step of this chain reaction uses the products of sugar metabolism to produce a substance called citrate, which is then further processed to yield energy. Like many enzymes, citrate synthase must first bind to a specific molecule, its substrate, before becoming chemically active.

Citrate synthase is produced in almost every cell type. It is the catalyst that initiates the first step of the basic metabolic reaction known as the citric acid cycle or the Krebs cycle, which occurs in all organisms that require oxygen for metabolism. The citric acid cycle produces ATP, a molecule used to fuel the basic processes of living cells, like respiration and reproduction. Citrate synthase is the first enzyme in the long chain of catalysts for the Krebs cycle, and the amount produced regulates the rate at which the entire cycle can proceed.

Like all enzymes, citrate synthase has a specific protein structure that enables it to catalyze reactions. It exists in the body in two separate states based on its conformation or shape: an active and inactive variety. During glycolysis, the sugar glucose, derived from food, has been metabolized into various chemicals, including two molecules of acetate that help initiate the Krebs cycle. When bound by a molecule of oxaloacetate, citrate synthase changes its conformation and opens a region on its surface to which the acetyl-CoA binds.

The mechanism of citrate synthase requires activation, which occurs when it binds to a compound called its substrate, in this case oxaloacetate, in a process called an induced fit. The inactive conformation of citrate synthase is known as its open form. Like other proteins, this enzyme is made up of many molecules of amino acids. When it binds to oxaloacetate, the shape is changed as certain amino acids are linked together, closing up and forming a kind of circle around the substrate. This closed form is the activation shape that enables the citric acid cycle to proceed.

Once the enzyme has bound to acetyl-CoA, it attaches a portion of the acetyl molecules to oxaloacetate, while at the same time chemically removing the CoA section. The transferred part, an acetate molecule with two carbons, is then bound to oxaloacetate, synthesizing a new six-carbon compound called citrate. This reaction allows the carbon atoms in the compounds to be moved further down the citric acid cycle in an easily transportable molecule, where they will take part in a series of metabolic transformations by which the cell generates more ATP.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-citrate-synthase.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.