We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is an Electrostatic Field?

By Pranav Reddy
Updated: May 17, 2024
Views: 9,989
Share

An electrostatic field is an invisible field that surrounds electrically charged particles. This field can form around two objects in the same vicinity with different electrical charges, or to a single object that is electrically charged in respect to its surrounding environment. Once formed, the electrostatic field can exert a force on other electrically charged objects in the vicinity.

The electrostatic field is a vector field that is defined as the force per unit charge that a stationary point charge would encounter at a particular point in the field. The electrostatic field is symbolized in mathematical equations as a capital letter “E”. In addition, the electrostatic field is measured using the International System of Units (SI) unit of newtons per coulomb.

The direction of an electrostatic field is equivalent to the direction of the force it exerts on a positive point charge. A stationary positive charge will have an electrostatic field pointing radially outward from the charge. On the other hand, a negative charge will have an electrostatic field pointing radially in towards the charge.

If two oppositely charged objects are within the same vicinity, the lines will start on positive charges and end on negative charges. The direction of the lines at any point between the two objects tells the direction in which the force will act. If a charge is positive, it will experience a force in the same direction as the field. On the other hand, a negative charge within an electrostatic field will experience a force in the direction opposite of the field.

The concept of an electrostatic field involves many properties similar to the force of gravity. A point charge within a uniform electric field acts in a similar fashion as an object on which the force of gravity is acting. Thus, using projectile motion and kinematic equations also applies to a point charge within a uniform electrostatic field.

Gauss’s Law is a method of calculating electrostatic c fields. Essentially, if you have a solid conducting sphere with a net charge of Q, you are able to asses that the excess charge lies on the outside of the sphere. Thus, Gauss’s law claims that the electrostatic field inside the sphere is zero and the electrostatic field outside the sphere is the same as a point charge with a net charge of Q. This assumption makes calculating vector components of an electrostatic field far easier.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-an-electrostatic-field.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.