We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Science

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is an Electrical Force?

By Michael Smathers
Updated: May 17, 2024
Views: 8,312
Share

Four forces are understood to govern the universe: the strong and weak nuclear forces, the electromagnetic — or electrical — force, and gravity. The latter two types, electrical force and gravity, are the only of these forces that extend to a macro range and therefore interact with matter on a large scale. Electromagnetism is responsible for chemical reactions, light, vision and virtually all interplay of matter. Almost all technology requires electricity to function, and there are several vital aspects and measurements of the electrical force. The basis of this force is the movement of electrons and the workings of positive and negative electrical charges.

Particles of matter can have positive or negative electical charges. Protons, which form the nucleus of an atom, have a positive charge, whereas the electrons that orbit the nucleus have a negative charge. Opposite charges attract one another in an effort to neutralize charge, and like charges repel, so putting opposite poles of two magnets together causes the ends of the magnets to pull toward one another. Electricity, at its most basic form, is the movement of electrons from one location to another in a static discharge or in an electronic circuit; electricity can only flow where there is an available conductive path.

The electromagnetic force is so named because an electric current and a magnetic field can create each other. Passing a magnet through a coil of wire causes the electrons in the wire to move away from the magnet due to the repulsion of the electrical force. Similarly, running an electric current through a coiled wire produces a magnetic field whose direction is opposite the current due to electrical inertia.

Two main measurements of electrical force govern most of the behavior that electricity exhibits when interacting with objects: voltage and resistance, from which the measurement for current derives. Voltage is the amount of electrical potential that exists from one point to another, similar to the pressure built up inside an activated water hose. The higher the voltage between two points is, the greater the electrical pressure and the more easily current will flow. The concept of resistance describes an object's propensity to resist electrical flow. The electrical current in amperes that flows from one point to another can be expressed as the voltage divided by the resistance in ohms.

Electrical current is either alternating current or direct current. The difference is the direction of flow; alternating current switches directions dozens of times per second with reversed polarities. Direct current maintains polarity and therefore only flows in one direction, such as through a battery.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-an-electrical-force.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.