We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is Acetyl-CoA?

By Kristin Urbauer
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Acetyl-CoA, or activated acetate, is an important molecule in the metabolism processes of the human body. Composed of two carbon atoms, this coenzyme is the metabolic product of the oxidation of several amino acids, pyruvate and fatty acids. It is then broken down and used by the body for energy production. This process is called the citric acid cycle, or Krebs cycle. As vital as it is in the metabolic process, it is possible to have too much, causing undesired health issues, such as high cholesterol.

The citric acid cycle is a metabolic process by which eight enzymes are used for the production of energy in aerobic oxidation. The cycle begins in mitochondria, where acetyl-CoA is oxidized. Through further metabolism, the body is then able to create adenosine triphosphate (ATP), the type of energy used within the cells of the body for a wide array of biological processes. The activated acetate enters the citric acid cycle at a specific juncture, at which time it used combined with two carbon atoms, thus creating citrate.

The acetyl-CoA that is used in the Krebs cycle comes from two main sources. The first source of the molecule is pyruvate, an organic acid that can be converted into carbohydrates, fatty acids or energy. In the case of the the citric acid cycle, it supplies energy to cells. Pyruvate is typically derived from glycolysis, which is the process by which the body breaks down sugars and other carbohydrates. The metabolism of fatty acids is another common source of activated acetate.

Though necessary for proper metabolism, it is possible to have overly high levels of this molecule in the body. Along with the more commonly known negative consequences of sugar consumption, high levels of sucrose in the diet can also have an adverse effect on the metabolic process, including on this coenzyme. Excessive levels can cause negative side effects. When the body has more available than is needed for the Krebs cycle, it sends the excess to be dealt with by the pancreas through the use of insulin. This excess is then either used in the synthesis of body fat or used in the creation of HMG-CoA, which triggers the production of cholesterol, causing high cholesterol levels in the blood.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.