We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Health

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Peptidomimetic?

By Helga George
Updated: May 17, 2024
Views: 12,272
Share

A peptidomimetic is a compound that is designed to mimic a biologically active peptide, but has structural differences that give greater advantages for its function as a drug. For instance, a peptidomimetic that is designed to mimic a hormone would have greater stability and be more available to its target receptor to transmit signals. A peptide is a large molecule made of amino acids that are linked with peptide bonds. Peptidomimetics may have unnatural amino acids or other unusual compounds to stabilize their structure or alter their biological activity.

The reason for the interest in peptides is that many have significant biological activity. This means they can act as hormones and signal molecules for the central nervous system and the immune system. Peptides can affect a wide range of cellular activity, among them digestion, reproduction, and sensitivity to pain. Many peptide activities are of interest as targets for drugs, but it can be difficult for them to cross the membrane to enter a cell. Also, peptides that do make it into a cell are frequently unstable.

Peptidomimetics were first designed to limit the conformational mobility of the peptide — in other words, the degree to which it can bend. Having peptides fixed in place makes it more likely that they will react with their desired target and limits undesirable side effects. Another goal is to increase their stability. The incorporation of unnatural compounds into their backbone makes it much less likely that these novel compounds will be degraded by the enzymes that break down peptides and peptidomimetics.

Peptides are comprised of chains of amino acids connected by a peptide bond between the carboxy terminus of one amino acid and the amino terminus of the next. There are numerous ways in which peptidomimetics can be altered. A peptidomimetic may have the peptide bond displaced entirely, replacing it with beta amino acids, which contain two extra carbon atoms between the amino and carboxy terminus of two adjacent amino acids. This can give rise to a wide array of configurations that are biologically-active and resistant to breakdown.

Organic chemists have identified many other ways of replacing the peptide bond. In addition, side chains are often altered, sometimes by the addition of cyclic peptides. These are peptides in which the amino terminus and the carboxy terminus of the same molecule are linked. All of these changes are usually designed to enhance the stability of the peptidomimetic.

Other factors to consider when synthesizing peptidomimemetics are the optimal fit of the binding site and whether to make strategic regions favor being in aqueous solution or in membranes. Transport across biological membranes is yet another factor that can be improved by the targeted synthesis of a peptidomimetic. A detailed knowledge of the target is required to make these decisions.

This approach has been highly valuable for identifying new active compounds. Some successful drugs have been developed using this method, including a peptidomimetic inhibitor of angiotensin-converting enzyme (ACE), which is used to treat high blood pressure and other conditions. Other peptidomimetic inhibitors include those designed to trigger cancer cells to go into programmed cell death, known as apoptosis. Several research labs have had success with this technique in model systems, and at least one patent has been applied for in this field.

The synthesis of peptidomimetics can be by design for a specific compound or large libraries can be synthesized and screened. An example of the latter approach utilizes combinatorial chemistry. This is the strategy of synthesizing a large number of molecules that are structurally related. The library of compounds produced can then be screened for active compounds.

The field of peptidomimetic design crosses a number of scientific disciplines. The success rate for identifying biologically-active compounds from libraries of peptidomimetic compounds is much higher than that from screening libraries of peptides. With the frequent advantages of increased stability and availability to their target, the field of peptidomimetics is growing.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-a-peptidomimetic.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.