We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Is a Nanosensor?

Mary McMahon
By
Updated: May 17, 2024
Views: 11,961
Share

A nanosensor collects and transmits information about data on the nanoscale, measured in tiny increments known as nanometers. Such devices have a number of potential applications in science and medicine, including the ability to provide feedback that allows nanoparticles to assemble themselves into functional models. Researchers in this field may work for universities, private companies, and public labs with an interest in the potential applications of nanotechnology. In the early 21st century, nanosensors and related technology were widely considered a significant scientific breakthrough with major potential applications.

These devices can be keyed to respond to specific environmental targets. For example, a deoxyribonucleic acid (DNA) nanosensor can be designed to flag specific chains of DNA in a specimen. This could be used for activities like rapid diagnosis of infections, as demonstrated by researchers at the Massachusetts Institute of Technology. When the sensor identifies a familiar trigger, it may send a signal or illuminate so it can be identified by another sensor device.

Applications for nanosensors in medicine are many. They can be used to provide information about what is going on inside the body on a nanoscale, inside cells and deep within structures that may be malfunctioning. In addition to relaying data to the outside, they could also be involved in nanoscale repair. A patient with a damaged liver, for example, might have a procedure to rebuild part of the organ with nanoparticles in a process known as molecular self-assembly, where the particles direct themselves in an organized fashion.

In science, a nanosensor can be used for activities like detecting trace chemicals, minerals, and other compounds in the environment. This can be useful for detection in lab environments as well as in the field. Public safety officials, for example, could use a DNA nanosensor to detect evidence of airborne viruses and catch an epidemic early, before it has a chance to spread throughout the population. Similar sensors could pick up trace amounts of radiation or hazardous chemicals that might pose a human health and safety threat.

Some lab facilities manufacture their own nanosensor equipment for specific research activities. Others may order them from suppliers of scientific materials. Costs can depend on the level of complexity required and the size. Applications for consumer devices like air quality detectors for the home mean that a number of companies have heavy investments in the development of technology to produce affordable nanosensors for use in mass-produced products.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Mary McMahon
By Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a WiseGeek researcher and writer. Mary has a liberal arts degree from Goddard College and spends her free time reading, cooking, and exploring the great outdoors.

Editors' Picks

Related Articles

Discussion Comments
Mary McMahon
Mary McMahon

Ever since she began contributing to the site several years ago, Mary has embraced the exciting challenge of being a...

Learn more
Share
https://www.wisegeek.net/what-is-a-nanosensor.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.