We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Science

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Genetic Algorithm?

Michael Anissimov
By
Updated: May 17, 2024
Views: 3,483
Share

A genetic algorithm is any type of software that uses variation and selection to produce an evolutionarily tuned output. That output may be a program, a value, or even a picture. The genetic algorithm needs a process for generating new variants and feedback, or fitness criteria, in order to determine which variants to discard and which to use.

For example, imagine a genetic algorithm designed to create images of fictional insects. The initial output is merely a hodgepodge of randomly connected lines. Based on feedback from human operators, images that look nothing like insects are eliminated, and future variations tend to look more and more insect-like. As the outputs become more finely tuned, they eventually begin to look something like insects.

The genetic algorithm is often mentioned in connection with Alife, or artificial life, which is the study of virtual organisms created in a computer. These virtual organisms usually live on a virtual grid, and sometimes even reproduce with each other and consume virtual nutrients. These Alife simulations are occasionally used to study real life forms, or to evolve behaviors shared with real life forms. By creating our own artificial evolutionary environments using genetic algorithms, we can view types of life that previously existed only in the imagination.

In one Alife simulation, "organisms" are merely lit-up pixels, which influence pixels around them based on whether adjacent pixels are lit up or not. Surprisingly, the interactions between these organisms can create complex high-level effects that no one could have predicted by looking at the low-level components.

Because genetic algorithms may explore large portions of the search space to a particular problem, they may yield solutions that human operators never would have thought up. The downside to these programs is that for problems with a very large search space, the number of possible solutions may be huge. Therefore, the system can be computationally intensive. By uniting the power of human thought with the brute search-and-test randomness of genetic algorithms, we can create unique new solutions to problems in biology, engineering, mathematics, and other fields.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.

Editors' Picks

Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology,...
Learn more
Share
https://www.wisegeek.net/what-is-a-genetic-algorithm.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.