We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Central Force?

By James Doehring
Updated: May 17, 2024
Views: 12,697
Share

A central force is a force with a direction and magnitude that only depend on an object's center and the distance from its center to another point. The direction a central force acts must be along the line joining the object's center to the other point, while the force's magnitude only depends on the distance, or radius, between the two. Examples of central forces are found in the gravitational force, the electrostatic force, and the force from a spring. Only two types of central forces can result in orbital motion: gravitational force and analogous force.

Newton’s law of universal gravitation states that the gravitational force between two objects is always directed toward one another. Furthermore, the magnitude of the force is inversely proportional to the square of the distance between the objects—in other words, doubling the distance between the objects will result in a force only one fourth as strong. When one object is much more massive than the other, the arrangement meets the criteria of central force.

An analogous central force is the electrostatic force between particles with an electric charge. Like the gravitational force, the electrostatic force is inversely proportional to the square of the distance between two particles. Unlike gravity, however, electrostatic interactions are proportional to the product of their charges, rather than their masses. They also tend to dominate on very small scales. Mathematically speaking, though, the magnitude of the gravitational force and the electrostatic force both follow the inverse-square law.

A different kind of central force can result from the interaction of a spring with an object. The force produced by a spring is proportional to the distance the spring is stretched from its equilibrium length. Stretching a spring twice the distance from its equilibrium length will result in an attractive force twice as strong. This kind of behavior is known as Hooke’s law and is seen not only in springs, but in any linearly elastic material—including most solid metals. When a spring or suitable material is anchored at a center, it too can meet the criteria of a central force.

Though increasing the distance between objects or particles has a very different effect in systems governed by the inverse-square law versus Hooke’s law, both of these central forces will produce closed orbital motion. Planets orbit the Sun because of gravity, a central force subject to the inverse-square law. Similarly, charged particles can orbit an oppositely-charged center due to the electrostatic force. A somewhat lesser-known fact is that a centrally-anchored spring can, when other forces are negligible, cause an object to orbit the center. Simple harmonic motion is one such example that is constrained to move along only one dimension.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-a-central-force.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.