We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Technology

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is a Binomial Distribution?

By D. Poupon
Updated: May 17, 2024
Views: 8,471
Share

A binomial distribution with parameters (n,p) gives the discrete probability of having x successes out of n trials, with the probability of success p, assuming each trial is independent and the outcome of a trial is either a success or a failure. The average number of successes out of n trials is the mean np, and the variance is np(1-p). The binomial belongs to a family of event related distributions including the the negative binomial and the Bernoulli distribution. Since binomial distribution probability is calculated using the factorial function, which gets very large as the number of trials increases, binomial distribution approximation of a normal or a Poisson distribution is typically used.

For example, a fair coin is flipped twice and a success is defined as getting heads. The number of trials is n = 2 and the probability of tossing a head is p = ½. The results can be summarized in a binomial distribution table: the probability of getting no heads, P(x = 0) is 25%, the probability of one head, P(x = 1) is 50%, and the probability of two heads P(x = 2) is 25%. The expected number of heads tossed is np = 2*1/2 = 1. The variance is np(1-p) = ½.

Other distributions describe the probability of events and belong to the same family as the binomial. A Bernoulli distribution gives the probability of success of a single event and is equivalent to a binomial with n = 1. The negative binomial distribution gives the probability of having x failures, where as the regular binomial gives the probability of x successes.

Often the binomial distribution’s cumulative density function is used, which gives the probability of having x or less successes in n trials. Calculating this probability is simple for a small n, but becomes tedious as n gets large, because of the binomial coefficient. The binomial coefficient is read “n choose x”, and refers to the number of combinations that x outcomes can be picked from n possibilities. It is calculated using the factorial function. As the number of trials (n) gets larger than 70, n factorial gets enormous and can no longer be calculated on a standard calculator.

The binomial distribution's approximation when n gets large may be discrete or continuous. If n is very large and p is very small, then the binomial distribution becomes a discrete Poisson distribution. If n is sufficiently large without any constraint on p, then the binomial normal distribution approximation may be used. The binomial mean and standard deviation become the normal distribution’s parameters and a correction for continuity is applied when calculating the cumulative density function.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-is-a-binomial-distribution.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.