We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Procedures

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Are the Stages of Action Potential?

By Karize Uy
Updated: May 17, 2024
Views: 29,979
References
Share

Usually, the stages of action potential are summarized in five steps, the first two of which are the rising and the overshoot phases. The three latter steps would be the falling, the undershoot, and the recovery phases. Some sources, whether physiologists or textbooks, sometimes include an initial resting phase before the rising phase when enumerating the stages of action potential, probably to illustrate the status quo of the neuron before action potential begins.

Action potential is an event that happens between neurons in order to send messages from the brain to the different parts of the body, whether for voluntary or involuntary actions. In the simplest sense, action potential can be described as short electrical pulses that are created inside the cell body of the neuron. These pulses are caused by the exchange of positive and negative ions when potassium and sodium ions exit and enter the cell body. The “spark” from the exchange, then, travels down the axon, or the stem-like part of the neuron, towards another neuron, and the cycle goes on. In many cases, when the brain needs to “send” many “messages,” action potential can occur in a series called a “spike train.”

A neuron usually contains positively-charged potassium ions (+K), while the sodium ions (+Na), also positively charged, reside in the periphery of the neurons. During the resting phase, the neuron is inactive and contains an “electric potential” of -7- millivolts (mV). This negative charge is maintained by the neuron’s sodium-potassium pump that brings in two +K ions in while carrying three +Na ions out of the membrane. When the brain “sends” a message, a significant amount of +Na ions enter the neuron, and the rising and overshoot stages of action potential occur. In these stages, the neuron experiences “depolarization” and becomes positively charged due to the entrance of +Na ions.

The neuron reaches the overshoot stage when its positive charge exceeds 0 mV. The more positively charged the neuron becomes, the more sodium channels begin to open, and more +Na ions rush in, making it harder for the potassium-sodium pump to carry the ions out. To let out positive ions, the potassium channels will open as soon as the sodium channels close, and the falling and undershoot stages of action potential take place. In these phases, the neuron experiences “repolarization” and becomes more negatively charged, so much so that the charge will hit below -70 mV in the undershoot stages, also known as “hyperpolarization.”

After both potassium and sodium channels close, the sodium-potassium pump functions more effectively in bringing in +K ions and carrying out +Na ions. In this final recovery stage, the neuron returns to its normal state of -7 mV, until another episode of action potential occurs. It is very interesting to know that all these stages of action potential occur in as short as two milliseconds.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Link to Sources

Editors' Picks

Discussion Comments
Share
https://www.wisegeek.net/what-are-the-stages-of-action-potential.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.