We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What are the Different Hydrogen Technologies?

By Robert Grimmick
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Humans have used hydrogen, the most abundant element in the universe, for hundreds of years. Early applications included blimps and balloons, while more recent hydrogen technologies have become essential to oil refineries and chemical manufacturing. Hydrogen may also have great potential in the energy and transportation industries, where it can be used with existing designs or more advanced technologies still in development. Research efforts are also underway to find environmentally friendly alternatives to the traditional methods of producing hydrogen from natural gas or other fossil fuels.

Listed on the periodic table of elements as "H," hydrogen is the most common chemical element in the universe, and has been used by humans in various ways for hundreds of years. It is also the lightest known element, which led to its use as a lifting gas in balloons and airships beginning in the late 1700s. Its use increased following the industrial revolution, and a variety of new technologies were developed to produce, transport, and store hydrogen to meet increased demand. Oil refineries are particularly heavy users, but hydrogen is also used in medicine, chemical manufacturing, and scientific research. As energy prices and environmental concerns grow, more and more attention is being paid to hydrogen technologies in the energy and transportation industries.

Some hydrogen technologies use existing designs or components that have been modified or optimized to use the element as a fuel source. In its highly flammable liquid and gas forms, hydrogen can be burned to power internal combustion engines or drive electricity-producing turbines. These technologies have already been proven with other fuel sources, so most research and development efforts focus on finding safer and more practical ways to store and transport hydrogen fuel. Existing infrastructure such as fuel tanks, filling stations, and pipelines may need to be modified or retooled. Although using hydrogen in this way can be cleaner than alternatives like gasoline, burning any fuel — including hydrogen — creates air pollution as a byproduct of combustion.

Another category of hydrogen technologies, hydrogen fuel cells, produces electricity through a series of chemical reactions rather than burning fuel. The only byproducts left behind are water and heat, which can often be reused for other purposes including heating a building. Multiple fuel cells are grouped together into a fuel cell stack. The size of the stack can be adjusted based on the amount of electricity needed for a particular application, which means the same technology can be used in both a small portable unit capable of charging small electronics and a full-sized power plant. A fuel cell stack can also be paired with electric motors to create a pollution-free fuel cell vehicle (FCV) or may be used to store electricity produced by wind, solar, or other renewable energy systems.

Although it is touted by many as a form of clean energy, hydrogen is often produced from natural gas and other fossil fuels, a process that can create pollution and greenhouse emissions. In order for hydrogen technologies to be a truly green source of alternative energy, new strategies for producing and transporting the element need to be developed. Since the early 2000s, research has shown that hydrogen can potentially be created or extracted from a variety of more sustainable sources including algae farms, wind, and solar powered electrolysis and even from human urine. Clean energy advocates remain hopeful that several of these technologies could become commercially viable on a large scale.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.