We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Industry

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Are Digital PID Controllers?

Andrew Kirmayer
By
Updated: May 17, 2024
Views: 5,458
Share

A proportional-integral-derivative (PID) controller is a device often used to control electronic devices and systems. Mathematical principles are typically applied by the device to process a signal and trigger a response in the electronics it is connected to. Digital PID controllers often function similar to analog ones, but can include microprocessors, programmable logic controls, as well as specialized software. The device controlled is sometimes referred to as a plant, which can be an industrial motor, actuator, and other machinery, as well as a home thermostat.

Digital PID controllers are sometimes used to manage single devices, but can also be included in an entire system. They are typically used to accurately adjust the output signals in systems such as temperature controllers, based on some level of feedback. The devices generally use mathematical calculations called algorithms, which can allow them to activate when programmed thresholds are reached. Conditions can also be monitored consistently at specific times; this function is often called the sample rate.

Error signals typically help drive the function of digital PID controllers. The proportional term usually refers to the mathematical reduction of the error, while the integral function typically aims to make the error as small as possible. When the output signal changes too fast, the derivative function sometimes limits the actions of the other two so the correction is not overdone. The three elements of proportional-integral-derivative controllers are often designed by experts in mathematical theory as well as by software programmers. A control interface, usually a computer program, can help people manage digital PID controllers without advanced expertise.

Sometimes software code is needed to tune a digital PID controller, while debugging may be needed to adjust the variables managed by the device. In the case of home temperature control, the device is often designed to respond to set point temperatures and the deviation from those. Digital PID controllers can also learn the times needed to heat up a room or cool it down. They are usually able to keep the temperatures steady in a room as well.

Most digital PID controllers operate by using fixed values. The process is typically ignored by the controllers; just the parameters of operation are usually tracked. Different PID controllers can be connected to manage the performance of a large system, however, or even adapt them to various uses in an overall application. Another benefit of digital PID controllers is that the sampling time can be a small fraction of how long it takes for a parameter to be adjusted, so accuracy and effectiveness are typically maximized.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Andrew Kirmayer
By Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various industries and disciplines. With a degree in Creative Writing, he is skilled at writing compelling articles, blogs, press releases, website content, web copy, and more, all with the goal of making the web a more informative and engaging place for all audiences.

Editors' Picks

Discussion Comments
Andrew Kirmayer
Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various...
Learn more
Share
https://www.wisegeek.net/what-are-digital-pid-controllers.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.