We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is Distributed Parallel Computing?

By John Markley
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Distributed parallel computing is a form of computing in which a computing task is divided into multiple sub-tasks that are then worked on at the same time, or in parallel, by a distributed computer network. Parallel computing is commonly used for large computing tasks, where processing the entire task sequentially would be very time consuming. Distributed parallel computing is commonly used in modern science and other areas that require large amounts of computer processing power.

A distributed computer network is a group of computers, each with its own individual memory and processor, that are connected by a network that allows them to communicate and work together. Individual computers in the network are commonly called nodes. The computers in a distributed network can be physically separated by large distances, though this is not always so. Computing done by a group of computers in the same location can also be called distributed if the individual nodes of the network are capable of operating autonomously and each node has its own memory, with individual processors sharing information with each other by message passing rather than by using a single shared memory.

An advantage of distributed parallel computing is that a distributed network can incorporate large numbers of individual computers that are not necessarily in the same location. This means that the amount of processing power that can be brought to bear on a large task when an entire network computes different parts of it in parallel can be extremely high. Distributed networks can also be more reliable than a single system, because the network can continue to operate even if some of its constituent nodes cease to function; there is no single point of failure that can bring down the entire distributed network simultaneously. A distributed network is also more scalable and easier to modify to suit changing needs, because adding or removing individual nodes from a network is usually easier than making alterations to a single large system.

Distributed parallel computing is frequently used for advanced scientific computing in many modern scientific fields, such as astrophysics and meteorology. These fields involve enormously vast, complex calculations that require great processing power to complete in a reasonable amount of time. Distributed parallel computing is also frequently used for computer graphics rendering, which requires large amounts of processing resources and is very well suited to being broken down into many parallel tasks. Individual frames of computer animation might be assigned to different nodes in the network, for example.

Several types of distributed parallel computing exist. Most commonly, the term is used to refer to a network of computers working on a problem in parallel while separated from each other geographically. Individual computers communicate via the Internet to form a loose network, often called a grid, and components of the problem the grid is working on are assigned to individual nodes and processed in parallel.

Often, individual nodes are not working solely or even primarily on the problem being worked on by the grid. Instead, individual nodes use some of their processing power for the grid while using the rest independently for other, unrelated tasks. In many cases, distributed parallel processing functions by taking advantage of moments when the computer's processor would otherwise be idle. Instruction cycles that would have otherwise gone unused — for example, during periods when the computer is on but not being used or during moments when the computer is awaiting input from its user — are instead used for tasks assigned by the grid.

Grids can vary greatly in size and power, from small groups of interconnected computers contributing spare instruction cycles to common tasks at a business office to worldwide networks with processing power rivaling or surpassing dedicated supercomputers. There are a number of large distributed parallel processing projects based on the participation of volunteers who allow their personal computers to donate spare processing power to the project, most often some form of computationally intensive scientific research. One popular example is Folding@home, which runs simulations of protein molecules for medical research on hundreds of thousands of individual computers.

Distributed parallel processing can also refer to cluster computing. Unlike the relatively loose connection of a computer grid, cluster computing uses a group of machines acting in parallel that work together very closely, acting in some respects as a single unit. The nodes are usually in the same location and connected by a local area network, but each node of a computer cluster still has its own separate memory, even if the cluster is not separated geographically. The individual computers comprising the cluster are usually identical, because this makes distributing tasks among them simpler, though this is not always the case. Clusters are frequently used for scientific computing, because they can provide high processing power using relatively inexpensive store-bought hardware.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.